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Abstract
We study the ground state quantum phase transition by means of entanglement in the
one-dimensional asymmetric Hubbard model with open boundary conditions. The local
entanglement between the middle two sites and the rest of the system, and the block
entanglement between the left and right portions of the system, are calculated using the
density-matrix renormalization group (DMRG) method. We find that the entanglement shows
interesting scaling and singular behavior around the phase transition line.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In condensed-matter physics, given a quantum system, some
of the most challenging problems are to find the ground state
and to study the quantum phase transition [1]. For those
models without analytical solutions the general approach is to
characterize an order parameter and measure it from the ground
state obtained numerically from a finite system, then do scaling
studies and extrapolate the results to the thermodynamic limit.
However, in some cases this method is quite inefficient and
sometimes no definite conclusion can be drawn.

Recently it had been shown that entanglement [2] may
be an effective indicator of quantum phase transition in spin
systems [3–5]. This concept was also applied to fermionic
systems [6] including the extended Hubbard model [7–9], ionic
Hubbard model [10], asymmetric Hubbard model [11] and
some other related models [12]. Gu et al [8] studied the
extended Hubbard model and found that the local entropy,
that is the entanglement between one site and the rest of
the system, clearly indicates that phase transition occurs
where the entropy is extremum or its derivative is singular.

1 http://www.phystar.net

Legeza et al [10] showed that in some models the two-
site entropy is a better indicator. These entropies can
be readily obtained using the density-matrix renormalization
group (DMRG) method [13, 14].

In this paper we use entanglement to demonstrate the
phase transition of the one-dimensional asymmetric Hubbard
model (AHM) with open boundary conditions. In the AHM
there are two species of fermions, say spin ↑ and spin
↓ particles, with different masses. The model has been
intensively studied recently as it may be used to describe some
important physical properties in strongly correlated systems
such as superconducting cuprates [15] and heavy fermionic
systems [16]. It can be realized in experiments using cold
fermionic atoms trapped in optical lattices [11, 17, 18], where
all model parameters can be tuned. It has also been studied
theoretically [11, 19–22]. However, the complete phase
diagram is still not very clear.

We consider equal number of both species of fermions.
We numerically calculate the two-site entropy as well as
the block entropy [4], which is defined as the entanglement
between the left and right portions of the system. We propose
that the entanglement shows interesting scaling behavior
around the phase transition line.
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The Hamiltonian of the AHM reads

H = −
∑

〈i j〉

∑

σ=↑,↓
tσ c†

iσ c jσ + U
∑

i

ni↑ni↓, (1)

where t↑ � t↓ � 0 are the hopping integrals for the light
↑ and heavy ↓ fermions, respectively, c†

iσ and ciσ are the
creation and annihilation operator, respectively, U > 0 is
the on-site repulsive Coulomb interaction between the two
species of fermions, and niσ = c†

iσ ciσ is the number operator.
Hereafter we set t↑ = 1. The AHM reduces to the Hubbard
model (HM) [23–25] for t↑ = t↓ = 1 and to the Falicov–
Kimball model (FKM) [26–30] for t↓ = 0. We only consider
the cases with N↑ = N↓ . The filling density is defined as
n = (N↑ + N↓)/L, where L is the length of the chain, or
the number of sites. Half-filling (n = 1) is achieved when
N↑ = N↓ = L/2.

It is well known that the HM and FKM belong to different
universality classes [19]. A phase transition should occur
somewhere on the U–t↓ plane [18–20]. To understand the
phases, we first look at the perturbation expansion in the
large-U limit. When t↑, t↓ � U , the hopping term in
Hamiltonian (1) can be regarded as a small perturbation. For
the HM, provided that n � 1, the expansion leads effectively
to the t–J model [31]. The method can be generalized to
the AHM [19]. Since the calculation is straightforward but
lengthy, we only present the final result. The expansion leads
effectively to the anisotropic Heisenberg model with hopping.
Explicitly the effective Hamiltonian reads

Heff = −
∑

〈i j〉

∑

σ=↑,↓
tσ c̃†

iσ c̃ jσ

+ t↑t↓
U

∑

〈i j〉
[σ x

i σ x
j + σ

y
i σ

y
j + �(σ z

i σ z
j − 1)]

+ O

(
t4
σ

U 3

)
, (2)

in which
c̃†

iσ = (1 − ni σ̄ )c†
iσ , (3)

� = t2
↑ + t2

↓
2t↑t↓

� 1, (4)

where σ̄ denotes the opposite spin of σ .
At n = 1, c̃†

iσ and c̃ jσ can be approximated as zero
in the large-U limit, hence the hopping term in the effective
Hamiltonian vanishes and the effective model becomes the
anisotropic Heisenberg model (the XXZ model). Therefore,
the system behaves very differently at n = 1 and n < 1.
The case n > 1 can be treated by considering the particle–
hole symmetry [32] of the AHM. It is found that the energy
spectrum is invariant (except for a global shift by a constant)
under the exchange of the numbers of particles and holes,
hence the physical properties of the system at n > 1 are just
the same as that at n < 1.

Away from half-filling (either n < 1 or n > 1), the
system possesses the density wave (DW) phase and phase
separation (PS) phase [28, 33]; at half-filling (n = 1), the
system possesses effectively the XY phase and the Ising phase.

The paper is arranged as follows. In section 2 we
show how entanglement is measured and implemented in the

DMRG algorithm. In section 3 we give the numerical results
and discussions for the away-from-half-filling and half-filling
cases, respectively. Finally a summary is given in section 4.

2. Measurement of entanglement

We are interested in the entanglement between a local block,
which is composed of one or more sites, and the rest of the
system. For the AHM, the local state on each site has four
possible configurations: |0〉, | ↑〉, | ↓〉 and | ↑↓〉. The Hilbert
space associated with the system with L sites is spanned by 4L

basis vectors. Suppose we have obtained the ground state |�〉,
the reduced density matrix of the local block with l sites is

ρl = trL−l |�〉〈�|. (5)

This matrix can be expressed in block diagonal form due to the
fact that the numbers of ↑ and ↓ fermions are conserved:

ρl = diag{(0, 0), (1, 0), (0, 1), (1, 1), . . . , (l, l)}, (6)

where (m, n) means a block whose bases contain m ↑ and n ↓
fermions. The von Neumann entropy

Sl = − tr
[
ρl log2(ρl)

]
(7)

measures the entanglement between the l sites and the
remaining L−l sites of the system. In general, the more evenly
distributed the eigenvalues of ρl , the higher the entropy is. The
degree of freedom (and hence the number of bases) within a
block of length l is 4l , therefore there are 4l eigenvalues. The
entropy Sl is maximum when all eigenvalues are equal (= 4−l),
and so Sl,max = − log2 4−l = 2l.

We use the DMRG method [13, 14] to calculate the
ground state properties of the system. This method is efficient
and accurate for one-dimensional lattice models. It involves
iterative diagonalization of a Hamiltonian in an approximated,
size-limited Hilbert space to obtain the target state (usually the
ground state). The approximated Hilbert space is constructed
from an appropriate number of eigenvectors of the reduced
density matrix of part of the system.

We are interested in two quantities: the two-site entropy
and the block entropy. Conceptually they are the same kind of
measurement. Both of them are the von Neumann entropy of
the reduced density matrix of part of the chain. The two-site
entropy, denoted as S2, is defined as the entanglement between
the middle two consecutive sites with the rest of the system.
We choose the middle sites so as to minimize any boundary
effects. Note that we consider the chain with an even number
of sites only. The measurement can be easily implemented
in the DMRG method [10]. During a ‘sweep’ in the finite
lattice algorithm, when the two free sites ‘move’ to the middle,
we obtain their reduced density matrix and compute the von
Neumann entropy using equation (7).

On the other hand, the block entropy, denoted as S(l), is
defined as the entanglement between the left block consisting
of l sites and the remaining right block. Studies of this quantity
have established a bridge between the quantum information
theory and conformal field theory [4, 34, 35]. In the DMRG
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algorithm the left and right blocks are renormalized in each
step. The well-known fact that the entropy does not change
upon renormalization group transformation enables us to
obtain the required block entropy.

In the DMRG method we apply the dynamical block
selection approach [36] plus information loss control [37]
to increase the efficiency and accuracy. In the following
computations we set the information loss χ < 10−8 and
the minimum and maximum number of DMRG states to be
100 and 250, respectively. Also, we apply the seed vector
construction routine [38] to further improve the efficiency.

3. Numerical results

3.1. Away from half-filling

In this section we examine the system where the total number
of particles does not equal L. In particular, we study 1/4-
filling, that is N↑ = N↓ = L/4 and n = 1/2. Before
presenting the results of the entanglement measurements, we
would first like to clarify the phases.

When t↑ is much larger than t↓ in magnitude, the hopping
of the light ↑ fermions becomes much more helpful for
lowering the system’s energy than that of the heavy ↓ fermions.
The appropriate configuration is that the light fermions spread
around in a large pool of free sites while the heavy fermions
congregate together. The two species of fermions separate,
hence the name phase separation (PS) phase to describe the
system. For open boundary conditions, as in our case, the light
fermions tend not to stay at the ends of the chain as it is too
costly to sacrifice some freedom of hopping, hence it is the
heavy ones which fill the ends. The following shows a typical
dominant configuration in this phase (24 sites, 1/4-filling):

|↓↓↓ 0 ↑ 00 ↑ 0 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↓↓↓〉. (8)

On the other hand, when t↑ ≈ t↓, the hopping of each species
of fermion is equally important. It turns out that both of them
distribute uniformly on the whole chain and the system is in
the so-called density wave (DW) phase. A typical dominant
configuration is

|↓ 0 ↑ 0 ↓↑ 0 ↓ 00 ↑ 0 ↓ 0 ↑ 0 ↓ 00 ↑↓ 0 ↑ 0〉. (9)

Our conjecture can be verified by measuring the local densities
of the ↑ and ↓ fermions. Figure 1 shows the results for a chain
of 16 sites with 4 ↑ and 4 ↓ fermions. Clearly, for small t↓,
the density of the heavy ↓ fermions is much higher at the two
ends of the chain (PS phase), while for large t↓, the density
distribution is more even (DW phase).

Then we compute the two-site entropy S2 for different
values of t↓ and U using the DMRG method. Figures 2(a) and
(b) show the results for U = 6.0 and 20.0, respectively. It is
obvious that, for any given L, two plateaus appear. For small
t↓ (PS phase) S2 is lower, while for large t↓ it is higher. The
cliff connecting the two plateaus becomes steeper and steeper
as L increases. This property is clearly revealed when we
plot the first derivatives of the curves in the insets. For any
fixed L, a peak appears between the two phases. The peak

Figure 1. The number densities of ↑ and ↓ fermions at site i for a
chain of length L = 16 at 1/4-filling: (a) U = 6.0, (b) U = 20.0.

is sharper for a longer chain. It may be expected that in the
thermodynamic limit the peak goes to infinity, indicating that
this phase transition is a typical Landau one.

Comparing the U = 6.0 and 20.0 cases, the critical t↓ is
larger for larger U . This result is consistent with reference [11].
For the case U = 6.0, all curves seem to pass through the
same point at t↓ = 0.170. However, we check that this does
not happen for other values of U . For instance, for U = 1.0
(which is not shown here), some curves do not even cross in
the critical regime. Therefore the special crossing in the case
U = 6.0 should merely be a coincidence.

It is not difficult to understand the phenomenon that the
two-site entropy of the PS phase is lower than that of the DW
phase. According to equation (6), the two-site reduced density
matrix ρ2 consists of nine blocks. In the PS phase, the heavy ↓
fermions congregate at the two ends while the light ↑ fermions
distribute in the middle. Only blocks (0, 0), (1, 0) and (2, 0)
contain significant values, hence S2 is low. However, in the
DW phase, the blocks (0, 0), (1, 0), (0, 1) and (1, 1) contain
significant values and so S2 is higher.

The above study shows that the two-site entropy S2 is
a good indicator of phase transition. From the insets of
figure 2, it is obvious that at a given U the critical t↓ converges
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Figure 2. The two-site entropy S2 against t↓ for different chain
lengths L at 1/4-filling: (a) U = 6.0, (b) U = 20.0. The first
derivatives are shown in the insets.

when L increases. The results can be extrapolated to the
thermodynamic limit. We repeat the same analysis for different
U and the phase transition line in the U–t↓ plane can be
obtained, as presented in figure 3 with error bars smaller than
the size of the symbols.

Next, we examine the block entropy of the same system.
Figure 4 shows the results for a 16-site chain. Due to the
symmetry S(l) = S(L − l), it is sufficient to show S(l) for
l = 1, . . . , L/2. First we note that in general S(l) increases
with l. This is not surprising because when the block becomes
longer, there are more finite elements in the reduced density
matrix ρl and hence higher S(l). On the other hand, the block
entropy in the DW phase is always higher than that in the PS
phase. It is because, in the PS phase, only the matrix elements
(in ρl) related to the bases where the ↓ fermions congregate to
the left are significant; however, in the DW phase, many more
elements are significant.

For small l, S(l) fluctuates due to boundary effects,
whereas it becomes more stable for long l. Moreover, the
results show that S(l) for different t↓ converge for long l. This
indicates that the entropy of a longer block is a better indicator
of phase transition. This conclusion is consistent with that

Figure 3. Ground state phase diagram of AHM at 1/4-filling in the
thermodynamic limit, deduced by the singular behavior of the
two-site entropy. The error bars are smaller than the size of the
symbols.

Figure 4. The block entropy S(l) for different t↓ at 1/4-filling in a
16-site chain: (a) U = 6.0, (b) U = 20.0.

in [10]. It is not surprising as the block entropy of a longer
block includes more correlation functions. It is a pity that
the convergence in the DMRG algorithm is poor for the AHM

4
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Figure 5. Proposed schematic sketch of the block entropy S(l)
against block length l at the ground state in the PS phase of a very
long chain away from half-filling.

away from half-filling. The poor convergence is largely due
to the fact that approximations to the particle densities have
been unavoidably imposed during the infinite lattice algorithm
(this problem does not exist for the half-filling case). Results
obtained from longer chains are not quite reliable.

For a very long chain we suggest that S(l) should behave
as schematically sketched in figure 5. The rise of S(l) is
suppressed at the beginning as there is only one significant
configuration (in which all sites contain the ↓ fermions) and
hence S(l) is close to zero. As the block grows and reaches the
pool of ↑ fermions, S(l) rises rapidly. For long l, the increase
in the number of possible configurations is restricted due to the
fact that the number of ↑ fermions is limited, hence S(l) rises
more slowly and soon saturates.

3.2. Half-filling

The physics of AHM at half-filling is quite different from that
away from half-filling. In the large-U limit, the system at half-
filling possesses two phases: the Hubbard phase (effectively
the XY phase) for large t↓ and the FK phase (effectively
the Ising phase) for small t↓. The transition is known to be
Kosterlitz–Thouless like [39, 40]. The ground state phase
diagram on the U–t↓ plane, unlike that in the previous case
of away from half-filling, is more subtle and hard to complete.
Fáth et al [19] studied the perturbation expansion and found
that in the large-U limit the phase transition line is right on
the Hubbard line t↓ = 1. For small U they computed the
spin gap and the magnetic order parameter; however, no solid
conclusion could be drawn. In this section we make an attempt
using entanglement.

First we compute the two-site entropy against t↓ for
different L. The results are shown in figure 6. There are
roughly two regions. For small t↓, S2 presents algebraic scaling
with t↓ (FK phase), while for large t↓, S2 scales linearly with
t↓ (Hubbard phase). The curves do not show discontinuity
for higher derivatives even for long L. This is a property of
the Kosterlitz–Thouless like transitions [39, 40], as explained
in [6].

The finite-size effects give rise to the formation of two
families of curves. One family is L = 4m (m = 1, 2, . . ..)
which has higher S2, while the other one is L = 4m + 2 which
has lower S2. The explanation is as follows. On the chain,

Figure 6. The two-site entropy S2 against t↓ for different chain
lengths L at half-filling: (a) U = 6.0, (b) U = 20.0.

Figure 7. Schematic diagrams showing the configurations of
singlets. (a) For the family L = 4m (here L = 8), the middle two
sites are little correlated, hence the entropy S2 is higher. (b) For the
family L = 4m + 2 (here L = 10), the middle two sites are strongly
correlated, hence S2 is lower.

the first site tends to form a singlet (| ↑↓〉 − | ↓↑〉)/√2 with
the second site so as to lower the energy of the system. The
third site tends to form a singlet with the fourth one, and so on.
Figure 7 schematically presents this phenomenon. If L = 4m,
the middle two sites are from different singlets and hence little
correlated. The spin freedom is higher, the uncertainty is more
and therefore the entropy S2 is higher. On the other hand, if
L = 4m + 2, the middle two sites tend to form a singlet and
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Figure 8. The two-site entropy S2 versus chain length L or 1/
√

L for
different t↓ at half-filling: (a) U = 6.0, (b) U = 20.0.
Determinations of phase are suggested in the brackets.

hence are strongly correlated. The spin freedom is lower, the
uncertainty is less and therefore S2 is lower. We have verified
this by measuring two-site entropies on different parts of the
chain. When L increases, the two families tend to merge
together. It is expected that in the thermodynamic limit they
should no longer be distinct since all finite-size effects vanish.

Besides, the curves converge to a single point for t↓ → 0.
In the U → ∞ limit, the point is expected to be at S2 = 1.0.
This can be explained as follows. In the limits U → ∞
and t↓ → 0, the effective Hamiltonian reduces to the Ising
model. The ground state is doubly degenerate and the two
configurations are | ↑↓↑↓ · · · ↑↓〉 and | ↓↑↓↑ · · · ↓↑〉. For a
finite system the ground state is the symmetric combination of
the two, hence S2 = 1.0 for any even L.

The two-site entropy also presents different scaling
behavior with L in the two phases. Figure 8 presents S2 versus
L and 1/

√
L. The two families of curves (L = 4m and

L = 4m + 2) are indicated with distinct lines. From the shape
of the lines we suggest which phase each line belongs to. Some
lines belong to the critical regime between the two phases. In
the FK phase, S2 goes like A(L → ∞)+ B exp(−L/ξ) where
A, B and ξ are parameters that may depend on t↓, U and L.

Figure 9. The block entropy S(l) for different t↓ in a half-filling
50-site chain: (a) U = 6.0, (b) U = 20.0. Determinations of phase
are suggested in the brackets.

B is positive for L = 4m and negative for L = 4m + 2.
For smaller t↓, S2 converges more quickly. The physical
interpretation is that the state is more ordered. In the Hubbard
phase, S2 goes like C(L → ∞) + D/

√
L , where C and D

may also depend on t↓, U and L. D is positive(negative) for
L = 4m (L = 4m + 2).

We expect the two families of curves for a certain t↓ to
converge to the same value of S2 in the thermodynamic limit,
as the value should be independent of the parity and boundary
condition of the chain. In the figures we extrapolate the curves
and deduce the value in the limit.

Second, we compute the block entropy. Figure 9 shows
the results for a 50-site chain. Again, due to the reflection
symmetry S(l) = S(L − l), it is sufficient to show S(l) for
l = 1, . . . , L/2. In general S(l) increases with l, for the
same reason given in the previous section for the case of away
from half-filling: when the block grows, the size of the reduced
density matrix ρl increases and the number of finite elements in
it increases, so S(l) rises. On the other hand, the block entropy
fluctuates with respect to the parity of l. For even l, the block
is composed of a neatly arranged series of two-site singlets and
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hence S(l) is lower. The fluctuation becomes weaker for long
l as the inner sites have a reduced tendency to form singlets.

From the trend of the lines we suggest to which phase each
line belongs. Some lines belong to the critical regime between
the two phases. The behavior of S(l) is obviously different
in the two phases. In the Hubbard phase, for either parity of
l, S(l) rises algebraically, whereas in the FK phase, for either
parity of l, S(l) rises quickly and saturates because the state is
more ordered. In the U → ∞ and t↓ → 0 limits it should be
expected that in the FK phase S(l) → 1.0 for all l because the
ground state is the symmetric combination of the two definite
Ising configurations: |↑↓↑↓ · · ·〉 and |↓↑↓↑ · · ·〉.

Vidal et al [4] suggested that, due to conformal field
theory,

S(l) ≈ P + Q ln l (10)

for long l, where P and Q are parameters that may depend
on t↓, U and L. In the ‘non-critical regime’ (FK phase here)
Q ≈ 0, while in the ‘critical regime’ (Hubbard phase here)
Q is proportional to the ‘central charge’ of the conformal
field theory and is finite. Therefore, the parameter Q can be
regarded as an indicator for the phase transition. For finite
systems where boundary effects are noticeable, equation (10)
is valid only for l in the vicinity of L/4. Hence, we take Q
as the value of the slope of the S(l)–ln l graph at l ≈ L/4.
Only the data points at odd l are used so that the fluctuation of
the graph due to the open boundary effect does not affect our
result. We pick three data points to measure the slope. Thus,
Q is computed as the weighted average of the slope between
the first and second point and the slope of the second and third
point. Explicitly,

l0 = [L/4],
l± = l0 ± 2,

Q ≈ ln l0 − ln l−
ln l+ − ln l−

S(l+) − S(l0)

ln l+ − ln l0

+ ln l+ − ln l0

ln l+ − ln l−
S(l0) − S(l−)

ln l0 − ln l−
, (11)

where [L/4] denotes the smallest integer larger than or equal
to L/4. The Q s for various t↓ and L are computed and the
results are presented in figure 10 (a). For each curve, there
exists a region where Q quickly drops towards zero. This
is the critical region where the phase transition occurs. For
better illustration, we give the first derivatives in figure 10 (b).
For each line the peak locates the critical point t↓c. Then we
perform scaling with 1/L, as shown in the inset, and find that
in the thermodynamic limit t↓c ≈ 0.32.

The above studies show that the two-site entropy is not
a sharp indicator of the phase transition of the half-filling
AHM, although it shows distinct behaviors in the two phases.
The block entropy, however, is useful for marking the phase
transition.

4. Summary

To summarize, we have studied the ground state phase diagram
of the asymmetric Hubbard chain by means of entanglement.
The middle-two-site entropy S2 and the block entropy S(l) are
computed for open chains using the DMRG method.

Figure 10. (a) The parameter Q, as calculated from equation (11),
against t↓ for different chain lengths L at half-filling and fixed
U = 20.0. (b) The first derivatives of the curves in (a). For each line
the peak locates the critical point t↓c. Based on the scaling with 1/L ,
the t↓c in the thermodynamic limit can be obtained, as shown
in the inset.

In the case of away from half-filling, we found that S2 is a
good indicator of phase transition between the DW phase and
PS phase. The S2 function of t↓ displays a sharp change at
the transition point. This phase transition is deduced to be the
Landau type. We performed scaling studies and presented the
phase diagram. Besides, the block entropy S(l) is also a good
indicator of phase transition as long as l is long enough. The
block entropy in the DW phase is higher than that in the PS
phase.

On the other hand, in the case of half-filling, S2 as a
function of t↓ shows different behaviors in the Hubbard phase
and FK phase. There is no sharp change of S2 in any derivatives
as the phase transition is Kosterlitz–Thouless like. Chains
with different lengths were studied and we found that two
families of curves are formed according to the parities of
the chains due to singlet formations. Besides, the scaling
behaviors of S2 with chain length L in the two phases are
different. S2 scales as 1/

√
L in the Hubbard phase but scales

as exp(−L/ξ) in the FK phase. The block entropy S(l) also
shows different behaviors in the two phases. In the Hubbard
phase S(l) changes algebraically, while in the FK phase it
changes exponentially. By applying the concepts in conformal
field theory, we propose to compute the parameter Q from the
block entropies and show that Q is a valid indicator of the
phase transition.
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The above studies reflect certain correlations between
entanglement and phase transition. They consolidate the
idea that the entropy of a part of a system provides fruitful
information about the whole system based on the superposition
principle of quantum mechanics.
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